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What Is a Pumping Test? 

 An aquifer test performed with a 
controlled pumping rate 

– constant-rate test 

– step-drawdown test (well performance) 

– recovery test 

 Water-level response (drawdown) 
measured in control well and one or 
more observation wells 
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What Are the Objectives 
of a Pumping Test? 

 Estimation of hydraulic properties 
(aquifers and aquitards) 

 Detection of boundaries 

 Evaluation of well performance (well 
loss) 
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Analysis of Pumping 
Test Data 

Traditional Methods 
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 Theis (1935) introduced a type-curve 
matching technique for estimating 
aquifer properties from a constant-rate 
pumping test assuming a fully 
penetrating pumping well in a 
homogeneous and isotropic nonleaky 
confined aquifer of infinite extent and 
constant thickness… 

In The Beginning… 

there was Theis! 
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In The Beginning… 
there was Theis! 
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 Cooper and Jacob (1946) subsequently 
discovered that the Theis solution, 
drawn on semilog axes, plots as a 
straight line after sufficiently long 
periods of pumping… 

And Then Came… 

Cooper and Jacob! 
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And Then Came… 
Cooper-Jacob! 
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Pumping Test Data 
Analysis 

 How often is the Cooper and Jacob 
method the first step in your analysis 
of pumping test data? 

 Are there techniques you could use to 
get more reliable results? 
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A Different Approach... 

 A more productive approach to 
pumping test data analysis begins with 
the application of derivative 
analysis that helps you to: 

– identify common flow regimes 

– guide subsequent curve matching 

 What is derivative analysis? 
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Derivative Analysis 

 Technique popularized in the petroleum 
industry (Bourdet et al. 1983) 

 Plot of ∂s/∂lnt vs t 

 Derivatives are calculated from field data 

 A derivative plot, which combines the 
display of drawdown and derivative data, is 
a powerful diagnostic and curve matching 
tool 



© 2014 HydroSOLVE, Inc. 

Interpretation of Derivative 
slope of drawdown data on semilog plot 
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Derivative Smoothing 

 Derivatives computed directly from 
field data are often noisy 

 Four smoothing options are 
available in AQTESOLV to reduce noise 

– nearest neighbor (no smoothing) 

– Bourdet method 

– Spane method 

– smoothing 

Begin with 

nearest 

neighbor method. 

Avoid excessive 

smoothing!  
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Effect of Smoothing 
Nearest Neighbor Option Bourdet Option 
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Simple Example: Single-
Well Test 

 12-hour constant-rate test (Q = 86.9 gpm) 

 Recovery monitored for 1 hour 

 Aquifer–fractured bedrock (Triassic sandstone, 
siltstone, shale sequence) 

 Upper boundary–water table 

 Lower boundary–unknown (total depth of well is 
465 ft) 

 Assume test well is fully penetrating but most of 
water may be coming from lower 150 ft 

 rc = rw = 4 inches 
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Nonleaky Confined 
Aquifer 

(e.g., Theis 1935; 

Cooper and 

Jacob 1946; 

Papadopulos and 

Cooper 1967) 

radial flow 
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Cooper and Jacob Match 
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Papadopulos and Cooper 
Match 
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Key Concepts and Tips 

 Combine derivative analysis with the 
Cooper and Jacob method to 

– identify IARF period (derivative plateau) 

– improve fitting of straight line 

 Cooper and Jacob can obtain results 
comparable with more rigorous 
methods with less effort 
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Key Concepts and Tips 

 Cooper and Jacob applied to single-
well tests can yield reliable estimates 
of T; however, S often will be biased 
due to partial penetration and/or well 
losses. 
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Case Study: Coastal Aquifer  
Oude Korendijk, The Netherlands 

 14-hour constant-rate test (Q = 788 m3/day)  

 Aquifer–7 m of coarse sand with some gravel 

 Upper boundary–18 m of clay, peat and clayey fine 
sand; note clayey fine sand directly above aquifer 

 Lower boundary–fine sand and clay sediments 

 Test well is fully penetrating 

 Observation wells at r = 30, 90 and 215 m from 
pumped well 

Source: Kruseman and de Ridder (1994) 
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Stratigraphy 

from Kruseman and de Ridder (1994) 
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Cooper and Jacob 
Analysis 

 Kruseman and de Ridder assumed a 
nonleaky confined aquifer for the 
analysis of the constant-rate pumping 
test. 

 Let’s consider interpretations of 
drawdown data with and without 
derivative analysis… 
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Cooper and Jacob, r=30 
and 90 m 
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Cooper and Jacob, r=30 
m, late 
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Cooper and Jacob, r=30 
m, early 
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Cooper and Jacob Results 

 We have three very different estimates 
of T and S. Which interpretation is 
most reliable? 

 Let’s consider the response of a leaky 
confined aquifer with aquitard storage 
and its associated derivative plot…  
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Leaky Confined Aquifer 

(e.g., Hantush 

and Jacob 1955; 

Hantush 1960) 

radial flow 
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Derivative Plot, Leaky 
Confined Aquifer 
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Hantush, r=30 and 90 m, 
leaky aquitard 
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Hantush, r=30 and 90 m, 
leaky aquitard 
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Summary of Results 

 Estimates of T (leaky confined): 

– 348 m2/day (compressible aquitard) 

 Estimates of T (nonleaky confined): 

– 375 m2/day (Cooper-Jacob, early) 

– 437 m2/day (Cooper-Jacob, composite) 

– 600 m2/day (Cooper-Jacob, late) 
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Key Concepts and Tips 

 Apply the Cooper and Jacob method in 
conjunction with derivative analysis to 
provide reasonable preliminary 
estimates of T and S for leaky 
confined aquifers. 

 Use derivative analysis to choose and 
refine conceptual model(s) of 
groundwater flow system. 
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Case Study: Channel Aquifer 
Estevan, Saskatchewan 

 Walton (1970) presented data and results 
from an eight-day pumping test conducted 
in a buried sand-and-gravel channel aquifer 
near Estevan, Saskatchewan, Canada 

– Q = 457 to 464 imperial gallons-per-minute 

– b = 30 to 90 ft (typical) 

– width of channel = 3,000 to 12,000 ft (typical) 
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Well Locations 

 three observation 
wells 

– r = 84 ft 

– r = 250 ft 

– r = 729 ft 

from Walton (1970) 
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Well Logs 

from Walton (1970) 
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Walton’s Analysis 
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Composite Plot 
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Derivative Plot 
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Cooper and Jacob Match 
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Image Well Arrays 

from Kruseman and de Ridder (1994) 

typical channel aquifer 

no-flow boundaries 
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Theis Analysis w/Channel 
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Key Concepts and Tips 

 Buried channel aquifer inferred from 
late-time derivative response 

 Aquifer properties (T and S) estimated 
efficiently from the infinite-acting period 
with composite plot and Cooper and 
Jacob solution 

 Channel width identified easily by trial-
and-error using Theis solution and image 
wells 
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Lessons 

 Combine derivative analysis with 
Cooper and Jacob for more reliable 
estimation of aquifer properties 

 Look for infinite-acting radial flow 
regime to match Cooper and Jacob 

 Use derivative analysis to select 
aquifer models and identify boundaries 
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Lessons 

 When applied carefully, Cooper and 
Jacob can provide reliable estimates of 
T and S in confined aquifers with or 
without leakage 

 Do not rely on Cooper and Jacob to 
determine S from single-well tests due 
to well loss 


